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We present a scheme for creating and measuring entanglement between two double quantum dot charge
qubits in a transport setup in which voltage pulses can modify system parameters. Detection of entanglement
is performed via the construction of a Bell inequality with current correlation measurements. An essential
feature is the use of the internal dynamics of the qubits as the constituent electrons tunnel into the leads to give
the single-particle rotations necessary for the Bell measurement.
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In an important recent experiment,1 Shinkai et al. demon-
strated correlated coherent oscillations between two coupled
double quantum dot �DQD� charge qubits formed in a top-
gated semiconductor heterostructure.2 From transport mea-
surements, indications were obtained that it should be pos-
sible to perform a suite of universal two-qubit quantum gates
with such a setup. However, such a claim can only be sub-
stantiated if it can be shown that the operations can entangle
the qubits.3 This brings us to the question that is the focus of
this Rapid Communication: If the qubits of Shinkai et al.
were entangled, how could we tell? Is it possible to detect
and measure the entanglement between DQD charge qubits
in a transport setup such as that of Ref. 1?

We answer these questions here by describing a series of
shotnoise measurements that can be used to construct a
Bell’s inequality �BI�,4 the violation of which provides a
clear signal of, and in certain circumstances quantitative in-
formation about, the entanglement between the qubits. Shot-
noise and the Bell’s inequality have been combined to study
entanglement in mesoscopic systems before.5 However, the
system here differs in several respects. Most important is that
here we are in the sequential-tunneling regime and coherence
between the electrons is assumed to be lost once the elec-
trons tunnel to the leads. Furthermore, the BI requires single-
qubit rotations and it is not initially obvious how this may be
accomplished. In this Rapid Communication, we show how
these obstacles can be overcome by making use of the inter-
nal dynamics of the qubits. As the qubit electrons tunnel into
the leads, i.e., as the qubits decay, they experience the action
of the system Hamiltonian and this rotates the qubits. We
show how an appropriate set of current correlation measure-
ments can extract the relevant information from the stochas-
tic background of the qubit decay.

The setup of interest is sketched in Fig. 1�a� with four
quantum dots �QDs� making up two charge qubits, with the
position of the electron within a DQD �left or right� corre-
sponding to the two logical qubit states. With a pseudospin
convention that �↓ ���L� and �↑ ���R�, the Hamiltonian of
the isolated two-qubit system is

HDQD = �
i=1,2

��i�z
�i� + Ti�x

�i�� + J�z
�1�

� �z
�2�, �1�

with �i and Ti the detuning and tunnel coupling of DQD
i=1,2, and with J the strength of the Coulomb interaction
between the electrons.

We assume that the DQD parameters as well as the
chemical potentials of the leads can be controlled to a limited
extent via voltage pulses and, as in Refs. 1 and 6, we envis-
age an experiment that consists of a series of repeated steps.
At the start of the cycle, both DQDs are empty. Then the left
chemical potentials are raised, such that one-electron tunnels
into each of the dots from the left. As in Refs. 1 and 6,
maintaining a large bias across the dots produces detunings
�i such that the electrons tunnel into localized states �L�i��.
The right chemical potentials are then raised such that the
electrons are trapped and two qubits are formed. They re-
main trapped in the system with the full two-qubit Hamil-
tonian acting on them for a time �init, at the end of which the
two-qubit system is left in the state �0. We want to measure
the entanglement of this state. Finally, all chemical potentials
are dropped below the dot levels and the electrons escape
into the leads. Sufficient time is waited for this to have hap-
pened with certainty before the sequence is repeated.

The only control over dot parameters assumed here is that
they be set once during the initialization of state �0, and
subsequently to a different set for the detection phase. It is
essential that various different configurations are possible so
that there is a range of single-particle rotations for the BI
measurement. As we show below, with an appropriate choice
of current correlation measurements, we can construct the
correlator E�a ,b���a ·��1�b ·��2�� with unit vectors a and b
determined by the DQD parameters. Repeating the experi-
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FIG. 1. �Color online� �a� The system consists of two DQDs
with each dot connected to its respective lead. With one electron in
each DQD, two charge qubits are formed that interact with interac-
tion strength J. �b� The maximum concurrence C of the pure two-
qubit state evolving from state �LL� at t=0 under the action of
HDQD. Only the time interval �0,�max	 with �max=J−1 is considered.
Other parameters were ��2�=��1�=� and T�2�=T�1�=T.
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ment with different parameters allows us to build the cor-
relator

F � E�a,b� + E�a,b�� + E�a�,b� − E�a�,b�� . �2�

The pertinent BI is the CHSH inequality, which reads
−2�F�2.7 A measurement of �F��2 therefore indicates en-
tanglement. Maximising �F� with respect to vectors
a ,b ,a� ,b� yields �Fmax�, and for pure states we have
�Fmax�=2
1+C2,8 with C the concurrence, a measure of two-
qubit entanglement.9 For mixed states, the region of violation
is bounded by max�2,2
2C	� �Fmax��2
1+C2.10,11

Initialization. We first discuss the nature of the entangled
states that can be produced within this scheme before ana-
lyzing the detection protocol in more detail. The Hamiltonian
of Eq. �1� can be used to form many different quantum gates.
For example, with �1=−�2, T1=T2, and �J��1��T1,
the Hamiltonian is effectively that of a FLIP gate,
HDQD�HFLIP= 1

2	��LL��RR�+ �RR��LL��, with effective cou-
pling 	=2T1

2J / �J2−�1
2�.1 Starting with the system in state

�LL�, and allowing it to evolve for a time �, the density
matrix of the system becomes

���� =
1

2
��1 + 
��LL��LL� + �1 − 
��RR��RR�

+ iC��LL��RR� − �RR��LL��
 , �3�

with 
=cos�	�� and C=sin�	��e−��, the concurrence of the
state, in which we have included a dephasing at rate �. These
states, although mixed for finite �, have the same violation of
the Bell inequality as a pure state of the same concurrence,
F���=2
1+C2.11 The entangled states obtained by letting
HDQD act on the state �LL� for a time are not restricted to
these FLIP-class states. The entanglement of this more gen-
eral class of states is investigated in Fig. 1�b�. Clearly, a high
degree of entanglement �concurrence approaching unity� is
obtainable under reasonable conditions.

Entanglement detection. Let us initially consider an ideal
model of the decay of the two-qubit system. We assume that,
once the initial entangled state is created, the interaction be-
tween the qubits is turned off �J=0�. This will be a good
approximation if the coupling of the QDs to the leads is
strong enough that the ‘measurement phase’ is quick com-
pared to the interaction time scale J−1. Let us also assume the
most general form for the single-qubit Hamiltonian
H�i�=��i�n�i� ·��i�, where ��i� is the single-qubit energy scale,
n�i� is a unit vector, and ��i� is a vector of Pauli matrices. We
return to our more realistic DQD model shortly.

We consider the DQD system to be in the strong Coulomb
blockade regime, such that at most one excess electron is
permitted in each DQD. We describe the tunneling of elec-
trons with a Markovian master equation, �̇=L�, with � the
density matrix of the qubit pair and L the total system Liou-
villian. The initial state of the system is �0, some entangled
state such as that of Eq. �3�. In the noninteracting approxi-
mation �J=0�, we can analyze the dynamics of each qubit
separately and need only consider the two qubits together
when we introduce the initial state. To facilitate calculation
of current statistics, we introduce counting fields 
L

�i� and 
R
�i�

of electrons in the L and R leads of dot i=1,2 �Ref. 12� to

obtain the 
-resolved master equation: �̇�i��
�=L�i��
���i��
�
with L�i��
�=L�i��
L

�i� ,
R
�i��, the 
-resolved Liouvillian of dot

i, and similarly for the density matrix, which includes the
empty state �0�i�� as well as the two-qubit states �L�i�� and
�R�i��. The Liouvillian can be written L�i��
�=L0

�i�+��i��
�
with first term describing the internal dynamics
L0

�i���i�=−i�H�i� ,��i�	, and the second, the coupling to the
leads. With chemical potentials set far below the dot levels,
the latter can be written

��i��
���i� = −
1

2 �

=L,R

�

�i��s


�i�†
s


�i���i� + ��i�s

�i�†

s

�i�

− 2s

�i���i�s


�i�†
ei


 , �4�

with operators s
= �0��
�i�� describing the jump on an elec-
tron from localized state 
�i�=L�i� ,R�i� to the leads. Setting


=0 in Eq. �4� we obtain the familiar master equation in
Lindblad form which describes the evolution of the actual
density matrix ��i�. From this point on, we assume that all
rates are identical, �L

�i�=�R
�i�=�, and assume that this rate is

faster than dephasing rate �, such that such dephasing from
external sources can be neglected in the detection phase �see
later�.

In Laplace space, the density matrix of the system at ar-
bitrary time is ��i��
 ;z�=	�i��
 ;z��0 with the 
-resolved
propagator for a single DQD, 	�i��
 ;z�= �z−L0

�i�−��i��
�	−1.
We are only interested in the situation in which the system
starts with one electron in each DQD, in which case, the
propagator in the long-time limit reduces to

	�
�i��
� =

JL
�i�ei
L

�i�
+ JR

�i�ei
R
�i�

2
�1�i� + R���i�,n�i��� . �5�

Here, J

�i� are jump superoperators defined by J


�i���i�

= �0�i���
�i����i��
�i���0�i�� and R���i� ,n�i����i�=U�i���i�U�i�†
with

U�i�=exp�− i
2��i�n�i� ·��i�� a unitary rotation about axis n�i� by

angle ��i�= 1
2arctan�2��i� /��. The above form of the propaga-

tor is the main formal result of this work. It shows that, in the
long-time limit, the behavior of the system effectively de-
composes into two parts: one in which the qubits decay di-
rectly, and one in which the qubits are first rotated and then
leave the dots. This rotation originates from the action of the
single-qubit Hamiltonian H�i� acting for a time governed by
the ratio of ��i� to �.

The moment generating function �MGF� for the
two-qubit system in the long-time limit is M�
�
=Tr�	�

�1��
� � 	�
�2��
��0
, where �0 is the two-qubit en-

tangled state. The first moment, MX
i ��M /��i
X

�i�� �
→0, cor-
responds to the mean number of electrons transferred to lead
X=L ,R of dot i in the measurement part of the cycle. More
importantly, let us define MXY ��2M /��i
X

�1��� �i
Y
�2�� �
→0

as the cross correlator between the number of electrons emit-
ted into lead X of dot 1 and into lead Y of dot 2. This quan-
tity can be extracted from shotnoise measurements5 as the
preparation-detection cycle is repeated continuously. In anal-
ogy to the standard CHSH measurement,7 let us define
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C�R�1�,R�2�� � MLL − MLR − MRL + MRR

=
1

4
Tr��z

�1�
� �z

�2��1�1� + R���1�,n�1���

� �1�2� + R���2�,n�2����0
 . �6�

This quantity still has contributions from the nonrotating de-
cay. However, if we take the following combination of
C-correlators:

E�a,b� � 4C�R�1�,R�2�� − 2C�R�1�,1�2�� − 2C�1�1�,R�2��

+ C�1�1�,1�2�� , �7�

we obtain E�a ,b�= �a ·��1�b ·��2�� with a ·��1�=U�1�†
�z

�1�U�1�

and similarly for b. This series of measurements then yields
exactly the correlation function required to form the CHSH
inequality. The operations R�i�=1�i� can be realized simply by
any rotation about the z-axis, i.e., with �i�Ti.

Since we start with exactly one electron in each DQD, in
the long-time limit the total number of electrons to leave
each DQD must also be unity. This means that we can re-
express the correlation function of Eq. �6� as C�R�1� ,R�2��
=1+4MRR−2�MR

�1�+MR
�2��. This has the great advantage

that one need only measure currents on one side of the dots.
Furthermore, the electron counting we have pursued here
only accounts for electrons leaving the dots and ignores
those entering the dots in the initialization phase. By ex-
pressing the measurement purely in terms of right-lead quan-
tities, we avoid having to explicitly take the latter into ac-
count. Figure 2�a� shows the CHSH correlator, F, as a
function of time. Violations of the CHSH inequality become
visible after a time �4�−1.

Nonidealities. The situation in real dots differs from the
preceding analysis in two respects that we now address: �i�
the single-qubit Hamiltonians do not have a �y component

and are further restricted to experimentally accessible DQD
parameters; and �ii� it is unlikely that the interaction between
qubits can be completely suppressed during the measurement
phase. The single-qubit part of HDQD can be rewritten as

H�i� = ��i��sin� 1
2��i���z

�i� + cos� 1
2��i���x

�i�� �8�

with ��i�=
�i
2+Ti

2. If Ti and �i are unrestricted in magnitude,
angle ��i� has the range −����i���, and angle ��i� is
bounded as 0���i��� with the upper bound attainable only
in the ��i� /�→� limit. With these bounds, a sufficient range
of rotations can be performed to ensure maximum violation,
despite the absence of the �y component. However, since
��i� /� is finite, the rotation angle is restricted,
0���i���max

�i� , with �max
�i� = 1

2arctan�2��i� /��max. This con-
straint limits the optimization of F. More importantly, with
interaction during the measurement, the value of F obtained
with the above scheme is no longer equal to the true value of
F of the state. Figures 2 and 3 show the maximum value of
�F� that would be measured, �Fmeas�, against the value of
�Fmax� calculated from the state. The measured results are
obtained from numerical integration of the Master equation
with the interacting Hamiltonian of Eq. �1� and subsequent
optimization of F subject to the above constraint on ��i�.

Figures 2�b� and 2�c� shows the results for initial states
belonging to the FLIP class. In the noninteracting case
�J=0� the restriction to �max

�i� �� causes only very small re-
ductions in the measured value of �Fmax� provided that
�max

�i� /��0.7, which corresponds to ���i� /��max�1. Further-
more, it is clear from the finite-J results that, for FLIP-class
states, �Fmeas�� �Fmax� even with interaction present, and thus
�Fmeas�, and the concurrence calculated from it, provide lower
bounds for the actual values of �Fmax� and C — the measure-
ment never flags an unentangled FLIP-class state as an en-
tangled one. Note further that the larger �max is, the smaller
the deviations. For example, at �max /�=0.99, even a value of
J=� produces only a deviation in �Fmax� of �5%. Figure 3
shows the same comparison for a set of randomly generated
density matrices. In this case, the measured value �Fmeas� is
no longer a lower bound for �Fmax�. For small J, however, the
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FIG. 2. �Color online� �a� Time evolution of CHSH correlator F
for two initial FLIP-class states �Eq. �3�	: one separable �C=0,
dashed lines� and one maximally entangled �C=1, continuous lines�
with J=0. The thick lines show F obtained with vectors close to
those yielding maximum CHSH violation for C=1. The thin lines
show F with a choice of vectors such that the inequality is never
violated. �b� and �c� Plot of �Fmeas� vs �Fmax� for FLIP-class states,
with �Fmeas� obtained the under constraint 0����max, and with
finite interaction strength J. The straight line indicates
�Fmeas�= �Fmax�.
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FIG. 3. �Color online� As Fig. 2�b�, but for randomly chosen
density matrices. Ideal values of �Fmax� calculated from Refs. 10 and
11.
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measured values are strongly clustered around the ideal val-
ues, and tight upper and lower bounds can be derived. For
larger values of J, the clustering is not as tight, and unen-
tangled states can give quite large values of �Fmeas�. From
these data, we infer that a reliable signature of entanglement
is �Fmeas��2.35 for �max=0.99� and �Fmeas��2.2 for
�max=0.7�. From this point of view, tighter restriction of
�max may be advantageous.

From the foregoing, we can identify the parameter re-
quirements for obtaining the strongest possible signal of en-
tanglement. In order to obtain tight bounds on Fmax, we re-
quire J����max

�i� in the measurement phase. Obtaining a
high entanglement in the initialization phase implies a differ-
ent relation between ��i� and J. From Fig. 2 we observe that
high concurrence occurs when Ti�J. If we assume
�max

�i� ��Ti�max, this implies that the single-qubit coupling
should change from Ti�J to Ti�J between phases. This
may be feasible, but note that this result was obtained with a
maximum initialization time of J−1. If we allow an
initialization time of 10J−1, say, then due to the greater range
of oscillation explored, high concurrences require
Ti���i��0.1J, such that Ti�J in both phases. In the end,
the maximum initialization time is determined by the
dephasing rate � and we require ��J for successful opera-
tion. For a dephasing time of 1 ns �Ref. 6� �corresponding to

��1 �eV�, and interaction strength J=25 �eV, this rela-
tionship is satisfied. This also implies that ���, consistent
with the neglect of dehasing during the read-out phase. Note
that it might also be experimentally possible to increase the
potential barrier between the two DQDs at the end of the
initialization phase, thus separating the electrons and reduc-
ing their interaction. This would further improve operation.

In summary, we have described a way of obtaining infor-
mation on the entanglement of DQD charge qubits which
uses shotnoise measurements of the decaying qubits to deter-
mine the CHSH parameter Fmax. This BI approach does not
need complete control over single-qubit rotations and it is
not even necessary to know which rotations were performed.
This can be contrasted with density-matrix tomography,14

which requires precise control and knowledge of the single-
qubit rotations. Our approach might also be used to measure
DQD entanglement generated in other ways, e.g., through
interaction with a common bath.15,16 Finally, we mention that
the use of internal dynamics to generate BI rotations may
have broader applicability to the study of entanglement in
other decaying system, e.g., quantum optics.
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